
1

I	hope	you	have	completed	Part	2	of	the	Experiment	and	is	ready	for	Part	3.		

In	part	3,	you	are	going	to	use	the	FPGA	to	interface	with	the	external	world	through	
a	DAC	and	a	ADC	on	the	add-on	card.		You	will	also	learn	about	FSM	design	and	
PWM	module.		Finally	the	DAC	and	ADC	use	a	serial	interface	known	as	SPI.		We	will	
take	a	brief	look	at	this	interface	standard	without	going	into	details	of	how	to	write	
Verilog	to	specify	the	SPI	module	design.



2

Here	again	is	a	list	of	topics	covered	in	this	lecture.		The	we	basically	will	cover	three	
things:	PWM,	FSM	design	and	SPI	for	interfacing.		All	these	are	relevant	to	Part	3	of	
the	Experiment	for	this	week.



3

Instead	of	using	analogue	resistor	network,	it	is	possible	to	build	a	simple	DAC	using	
only	digital	components.		
Here	is	a	circuit	schematic	for	a	pulse-width	modulated	DAC.		Here	the	counter	is	
used	to	produce	a	count	value	A	that	ramps	up	linearly	in	a	sawtooth	manner.		The	
digital	value	we	want	to	convert	to	analogue	value	is	data_in,	which	is	stored	as	B	in	
the	input	register.		A	digital	comparator	circuit	compares	this	input	data	with	the	
counter	value	(which	is	ramping	up).		While	A	is	less	than	B,	the	output	of	the	
comparator	is	high.		As	soon	as	A	exceeds	B,	the	output	goes	low.		In	this	way,	the	
pulse	width	is	proportional	to	the	value	of	B	(or	data_in)	in	a	linear	manner.		Passing	
this	PWM	signal	through	a	lowpass	filter	will	give	an	analogue	output	which	is	
linearly	related	to	data_in.



4

This	is	how	the	PWM	module	works.		It	is	very	simple,	but	very	effective.		You	should	
compare	the	DAC	output	and	PWM	output	in	Part	3	of	the	experiment,	and	see	that	the	two	
methods	are	equally	effective	in	producing	an	analogue	voltage.



5

Here	is	a	simplified	generic	diagram	of	a	finite	(or	synchronous)	state	machine	(FSM	
or	SSM).		A	set	of	D-flipflips	are	used	to	store	the	current	state	value.		The	current	
state	together	with	external	inputs	are	fed	to	a	combinational	logic	circuit	to	
evaluate	two	things:	the	next	state	and	the	current	outputs.		

With	an	n-bit	register	and	using	binary	state	encoding	(i.e.	coding	states	as	binary	
number),	such	machine	can	have	a	maximum	of	2^n	states.		

This	is	a	synchronous	state	machine	because	the	transition	to	the	next	state	is	
synchronous	with	the	rising	edge	of	the	clock	signal.		Therefore	all	output	signals	are	
synchronized.

There	are	two	basic	rules	in	designing	a	FSM	that	operates	reliably:
1.Do	not	put	logic	in	front	of	the	clock	signal.		Doing	so	is	likely	to	cause	timing	issues	
when	the	SSM	is	used	in	conjunction	with	the	rest	of	the	system.			
2.Do	not	use	asynchronous	SET	or	RESET	signals.		Doing	so	would	make	the	rest	of	
the	system	NOT	synchronous	to	the	CLOCK	signal.



6

The	combinational	logic	circuit	in	a	FSM	performs	two	separate	tasks:
1. It	determines	what	the	output	signals	should	be.		This	derived	by	the	current	

state	value	STATE	and	the	current	inputs.		Therefore	such	output	signals	could	
change	in	the	middle	of	a	clock	cycle	if	input	signals	are	NOT	synchronized	with	
the	CLOCK.

2. It	determines	what	the	next	state	value	should	be,	i.e.	the	state	transition	of	the	
FSM.

The	combinational	logic	block	(by	definition)	contains	no	memory		(or	register)	
circuit.



7

We	will	now	consider	the	design	of	a	FSM	to	do	some	defined	function:
Design	a	circuit	to	eliminate	noise	pulses.		A	noise	pulse	(high	or	low)	is	one	that	lasts	
only	for	one	clock	cycle.		Therefore,	in	the	waveform	shown	above,	IN	goes	from	low	
to	high,	but	included	with	some	high	and	some	low	noise	pulses.		The	goal	is	to	clean	
this	up	and	produce	ideally	the	output	OUT	as	shown.

Here	we	label	the	states	with	letters	a,	b,	c	….		Starting	with	a	when	IN	=	0,	and	we	
are	waiting	for	IN	->	1.		Then	we	transit	to	b.		However,	this	could	be	a	noise	pulse.		
Therefore	we	wait	for	IN	to	stay	as	1	for	another	close	cycle	before	transiting	to	c
and	output	a	1.			If	IN	goes	back	to	zero	after	one	cycle,	we	go	to	a,	and	continue	to	
output	a	0.

Similar	for	state	c,	where	we	have	detect	a	true	1	for	IN.	If	IN	->	0,	we	go	to	d,	but	
wait	for	another	cycle	for	IN	staying	in	0,	before	transiting	back	to	state	a.		

Therefore	this	FSM	has	four	states.	Note	that	in	reality,	OUT	is	delayed	by	ONE	clock	
cycle.	There	is	in	fact	no	way	around	this	– we	have	to	wait	for	two	cycles	of	IN=0	or	
IN=1	before	deciding	on	the	value	of	OUT.



8

This	example	illustrates	how	each	state	represents	a	particular	history	that	needs	to	
be	recorded.			
This	slide	reiterates	who	we	arrives	at	the	state	diagram	and	what	each	state	means.



9

Before	mapping	the	state	diagram	to	hardware,	we	need	to	perform	state	encoding
– giving	each	state	a	unique	binary	value.		For	the	noise	eliminator,	we	have	four	
states	and	therefore	if	we	use	binary	encoding,	we	need	two	state	bits	to	encode	all	
four	states.		Here	we	assign	values	S1:S0	of	00,	01,	11	and	10	to	states	a,	b,	c	and	d	
respectively.

Note	that	you	could	assign	ANY	binary	number	to	any	state	– and	the	implemented	
FSM	will	work.	However,	different	state	encoding	will	result	in	different	
implementations,	affecting	the	complexity	of	the	digital	logic.		

In	the	assignment	above,	we	deliberating	make	S1	the	same	as	OUT	– this	simplifies	
the	output	logic.
We	deliberately	make	all	states	linked	by	arrows	only	having	one	bit	changing	
(hence	01	->	11).		This	tends	to	simply	the	transition	logic	and	reduce	glitches.



10

Once	we	have	completed	state	encoding,	we	can	fill	in	the	state	transition	table	with	
binary	values	for	the	current	state	values	S1:0,	the	next	state	values	NS1:0	and	the	
output	OUT.		This	is	shown	on	the	left.
If	you	were	to	design	this	FSM	by	hand,	you	would	need	to	generate	Boolean	
equations	for	the	next	state	values	NS1	and	NS2,	and	the	output	signal	OUT.
You	may	even	use	K-map	to	perform	Boolean	simplification.	



11

Now	we	can	derive	the	Boolean	express	for	NS1,	NS0	and	OUT	in	the	usual	way.		

Since	in	general	FPGA	architecture,	the	logic	elements	can	handle	many	inputs	(at	
least	4	input	signals)	and	is	much	more	complex	than	a	simple	logic	gate,	
implementing	the	Boolean	equation	for	NS1	would	only	use	ONE	logic	block.
Furthermore,	each	logic	element	also	include	its	own	registers.		So	implementing	
FSM	in	FPGAs	is	easy	and	efficient.
Note	that	the	actual	output	waveforms	shows	that	OUT	has	a	one	clock	cycle	delay.



12

In	implementing	FSMs	using	FPGAs,	we	often	use	a	form	of	state	encoding	different	
from	simple	binary	encoding.		It	is	known	as	one-hot	encoding.		
With one-hot	encoding,		only	one-bit	in	the	state	value	is	“hot” (i.e.	set	to	‘1’),	and	
all	the	other	bits	are	“cold” (i.e.	reset	to	‘0’).	

Using	one-hot	encoding	matches	the	FPGA	architecture	well.	Each	FPGA	logic	
element	contains	a	combinational	logic	module	and	one	or	more	registers.		
Therefore	FPGA	is	a	register-rich	architecture.

As	an	exercise,	please	implement	the	noise	eliminator	using	one-hot	encoding	
instead	of	binary	encoding	as	we	have	in	the	previous	slides	by	hand	(i.e.	without	
using	CAD	tools).		You	will	appreciate	why	one-hot	encoding	is	efficient	with	FPGAs.



13

Instead	of	manually	designing	a	state	machine,	we	usually	rely	on	Verilog	
specification	and	synthesis	CAD	tools	such	as	Altera’s	Quartus software.
Here	we	use	an	EXPLICIT	reset	signal	rst to	put	the	state	machine	in	a	known	state.		
We	also	use	one-hot	instead	of	binary	encoding	of	the	states.		This	is	specified	in	the	
parameter	block.

Using	parameter	block	to	give	a	name	to	each	of	the	states	has	many	benefits:		the	
Verilog	design	is	much	easier	to	read;	you	can	change	state	assignment	values	
without	needing	to	change	any	codes.		In	general,	parameter	block	allows	you	to	use	
symbols (names)	to	replace	numbers.		This	makes	the	code	easier	to	read	and	easier	
to	maintain,	and	it	is	a	good	habit	to	get	into.

The	state	variable	declaration	reg [NSTATE-1:0]	is	used	here	to	show	that	you	there	
are	4	states	(S_A	to	S_D).

When	specifying	FSM	in	Verilog,	you	should	following	the	following	convention:
• Use	always	@	(posedge clk)	block	to	specify	the	state	transition.		Note	that	we	use	
the	<=	assignments	(non-blocking)	in	this	always	block	because	you	are	responding	
to	clock	edges.		
• Use	a	separate	always	@	(*)	block	to	specify	the	the	output	logic.		We	use	normal	
assignments	(blocking)	here	because	this	is	actually	a	combinational	logic	block,	not	
sequential	circuit.



14

If	you	enter	this	Verilog	description	into	Quartus	and	simulate	the	circuit,	you	will	
see	the	waveform	as	shown	in	this	timing	diagram	as	expected.		Note	that	the	actual	
waveform	for	out	is	NOT	the	ideal	waveform,	but	is	delayed	by	one	clock	cycle.



15

Let	us	now	consider	another	example,	which	will	appear	in	the	Lab	Experiment	later.		
You	are	required	to	design	a	pulse	generator	circuit	that,	on	the	positive	edge	of	the	
input	IN,	a	pulse	lasting	for	one	clock	period	is	produced.

The	state	diagram	for	this	circuit	is	shown	here.		There	has	to	be	three	state:	IDLE	
(waiting	for	IN	to	go	high),	the	IN_HIGH	state	when	a	rising	edge	is	detected	for	IN,	
and	WAIT_LOW	state,	where	we	wait	for	the	IN	to	go	low	again.

Shown	here	is	the	timing	diagram	for	this	design.	This	module	is	very	useful.	It	
effective	detects	a	rising	edge	of	a	signal,	and	then	produces	a	pulse	at	the	output	
which	is	one	clock	cycle	in	width.



16

This	FSM	has	three	states:	IDEL,	IN_HIGH	and	WAIT_LOW.		Mapping	the	state	diagram	to	
Verilog	is	straight	forward.		
1.The	declaration	part	is	standard.		This	is	followed	by	the	parameter	section..		Here	we	use	
straight	forward	binary	number	assignment,	and	therefore	we	have	two	state	bits	(maximum	
four	states,	but	only	three	are	used).
2.The	initial	section	is	for	initialization.		Normally	for	a	FSM	design,	it	is	best	to	include	a	
RESET	input	signal	which,	when	asserted,	will	synchronously	put	the	state	machine	to	an	
initial	state.		Here	we	are	using	a	nice	feature	of	FPGAs,	which	allows	the	digital	circuits	to	be	
initialised	to	any	states	during	CONFIGURATION	(i.e.	when	downloading	the	bit-stream).		
When	you	configure	the	FPGA,	the	registers	used	for	state[1:0]	will	be	loaded	with	the	value	
2’b00The	actual	state	machine	is	specified	with	the	always	@	block.	
3.The	first	line	defines	the	default	output	value	for	pulse	is	0.		This	ensures	that	pulse	is	
always	defined.		
4.The	case	statement	is	the	best	way	to	specify	a	FSM.		Each	case	specifies	both	the	
conditions	for	state	transitions	and	the	output.		It	is	important	to	note	that	state	and	output	
specified	for	each	CASE	are	the	next	state	and	next	output.		For	example,	if	the	FSM	is	in	the	
IDLE	state	and	in==1’b1	on	the	next	positive	edge	of	clk,	the	FSM	will	go	to	state	IN_HIGH	
and	make	pulse	go	high.
5.The	<=	assignment	specifies	that	the	changes	will	occur	simultaneously	when	the	always	@	
block	is	exited.				
6.Finally,	the	default	section	will	catch	all	unspecified	cases.	In	this	case,	default	section	is	
empty	(i.e.	by	default,	do	nothing).		YOU	MUST	ALSO	INCLUDE	THE	DEFAULT	SECTION	IN	
YOUR	FSM	DESIGN.



17

Finally,	here	is	a	very	useful	module	that	uses	a	four�-state	FSM	and	a	counter.		It	is	the	
combination	of	the	previous	example	with	a	down	counter	embedded	inside	the	FSM.
The	module	detects	a	rising	edge	on	the	trigger	input,	internally	counts	n clock	cycles,	then	
output	a	pulse	on	time_out.		This	effectively	delay	the	trigger	rising	edge	by	n	clock	cycles.
Here	we	have	the	port	interface	and	the	declaration	parts	of	the	Verilog	design.



18

The	FSM	state	diagram	is	very	similar	to	that	for	pulse_gen.v.		However	we	have	four	
states	instead	of	three.		Go	through	this	yourself	and	make	sure	that	you	understand	
how	this	works.	



19

I	also	provide	a	purpose-built	ADC/DAC	board	to	support	the	lab	experiment.		This	
analogue	I/O	board	in	only	needed	for	Part	3	and	4	of	VERI.		However	I	will	now	be	
examining	the	digital	serial	interface	for	these	converter	chips.



20

This	shows	the	block	diagram	of	the	analogue	I/O	card	used	in	the	VERI	experiment.		
It	consists	of	a	DAC	(MCP4911)	and	a	ADC	(MCP3002),	both	using	Serial	Peripheral	
Interface	(SPI).		The	DAC	output	is	buffered	by	a	unity	gain	opamp connected	to	the	
right	channel	of	a	stereo	jack	socket.		

The	ADC	has	two	input	channels,	one	from	a	potentiometer	providing	a	dc	voltage	
(CH0)	and	another	from	the	3.5mm	jack	socket	(CH1).		

Finally,	there	is	a	2nd order	low-pass	active	filter,	the	input	of	which	is	driven	directly	
from	a	digital	output	pin	of	the	Cyclone	FPGA.		This	is	intended	to	provide	filtering	of	
a	pulse-width	modulated	DAC	output	from	the	FPGA.



21

The	DAC	used	with	the	I/O	card	is	10-bit,	and	it	uses	the	Serial	Peripheral	interface.		
Its	functional	block	diagram	is	shown	here.		The	SPI	interface	has	four	signals,	which	
should	be	drive	by	either	the	microcontroller	or	the	FPGA.		The	DAC	itself	uses	a	
resistor	string	architecture	(i.e.	just	a	bunch	of	1024	series	resistors	of	identical	
values).		It	has	a	selectable	gain	of	1X	or	2X.



22

To	send	a	value	to	the	DAC	to	output	(i.e.	produce	the	analogue	output	Vout),	a	16-
bit	value	is	sent	to	the	DAC	chip	in	a	serial	manner.		The	Chip	Select	(SC)	signal	going	
low	indicate	that	this	is	the	start	of	the	data.		This	establishes	the	beginning	of	the	
data	frame.		First	data	bit	(bit	15)	is	always	0.		Bit	14	determines	whether	the	
reference	voltage	(Vreg)	is	buffered	or	not	buffered	(via	an	internal	opamp).		For	our	
design,	Vref	is	around	3.3V.		
Bit	13	determines	the	gain	of	the	DAC	(x1	or	x2).		Bit	12	is	set	to	1	if	you	are	using	
the	DAC,	and	set	to	0	if	you	want	to	shutdown	the	device	to	conserve	power.
Bit	11	to	2	contains	the	10-bit	data	D[9:0]	to	convert	into	analogue	voltage	Vout,	
MSB	first.		Bit	1	and	0	are	don’t	cares.
The	LDAC	(low	active)	signal	can	be	connected	to	ground	or	used	a	low	active	strobe	
signal	to	transfer	the	data	to	the	DAC	register	(i.e.	tell	the	DAC	to	update	Vout).		If	
LDAC	is	low,	DAC	update	happens	on	rising	edge	of	CS_bar.



23

This	is	a	simplified	diagram	showing	how	the	Cyclone	V	FPGA	is	interfaced	to	the	two	
data	converters.		There	are	two	ADC	channels	and	in	our	experiment,	we	are	mostly	
using	channel	1	via	the	3.5mm	jack	socket.		You	will	be	supplying	speech	signals	
from	the	desktop	computer.
There	is	one	DAC	which	drives	both	the	small	speaker	and,	much	better,	drives	the	
ear-phone.		(Please	bring	the	ear-phone	to	the	lab.)
The	interface	between	the	FPGA	chip	and	the	converters	is	through	the	SPI	bus.		You	
are	given	the	Verilog	design	for	these	two	interface	modules:		spi2dac.v	and	
spi2adc.v.		In	the	rest	of	this	lecture,	I	will	be	going	through	the	design	of	the	spi2dac	
module.



24

In	order	to	use	the	DAC,	you	have	to	include	the	interface	module	“spi2dac” in	your	
design.		This	module	has	a	schematic	shown	above.		It	takes	two	inputs	(in	addition	
to	the	50MHz	clock	signal):	data[9:0]	is	the	10-bit	digital	data	to	be	converted	by	the	
DAC,	and	a	load	signal	which	is	a	high	pulse	to	trigger	the	spi2dac	module	to	send	
the	10-bit	data	to	the	DAC.

The	internal	working	of	sp2dac	can	be	divided	into	4	main	modules.		The	divide-by-
50	module	is	straight	forward	– it	produces	a	1MHz	clock	for	the	finite	state	
machine,	and	is	gated	through	the	AND	gate	to	generate	the	serial	clock	signal	(at	
1MHz).
The	load	detector	module	handles	the	load	command	and	produces	control	signals	
to	the	SPI	state	machine	and	the	shift	register.
The	shift	register	sends	the	control	bits	and	the	10-bit	data	serially	to	the	SDI	output.
The	spi	controller	FSM	is	the	main	control	module	designed	as	a	state	machine.

We	will	consider	each	sub-module	individually	in	next	week’s	lecture.


